ESTADOS DE ENERGIAS QUÂNTICO DE GRACELI.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
-
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli +
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
-
-
DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
x
sistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
-
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
[ESTADO QUÂNTICO]
O teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.
Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.
Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.
Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
X
O teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.
Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.
Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.
Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.
Demonstração direta[editar | editar código-fonte]
Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.
Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.
Demonstração baseada na forma simplética[editar | editar código-fonte]
Outra forma de provar o teorema é ter em conta que a forma de volume do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:
X
Outra forma de provar o teorema é ter em conta que a forma de volume do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
De onde segue que o determinante da transformação é igual a 1 e, portanto:
- X
De onde segue que o determinante da transformação é igual a 1 e, portanto:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Essa última expressão é essencialmente o enunciado do teorema de Liouville.
Essa última expressão é essencialmente o enunciado do teorema de Liouville.
Equação de Liouville[editar | editar código-fonte]
O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:
- X
O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou em termos do operador de Liouville, também chamado "Liouvilliano":
- X
ou em termos do operador de Liouville, também chamado "Liouvilliano":
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que leva à forma:
- X
que leva à forma:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Mecânica quântica[editar | editar código-fonte]
Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:
- X
Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:
- X
Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde é um observável.
O teorema de Kolmogorov–Arnold–Moser é um resultado, em sistemas dinâmicos, sobre a persistência de movimentos quasi-periódicos. Este teorema resolve parcialmente o problema dos pequenos divisores (que origina problemas de convergência em sistemas com múltiplas frequências).
O movimento num sistema integrável está confinado a uma superfície toroidal. Diferentes condições iniciais do sistema originam diferentes toros num espaço de fase.
O teorema KAM estabelece que, se um sistema se encontra submetido a uma pequena perturbação não linear, alguns toros serão deformados e outros destruídos. Os que sobrevivem são aqueles que têm um quociente de frequências suficientemente irracional. Isto é, são destruídos aqueles cujo quociente de frequências se aproxima mais a um número racional, dados pela relação
X
Onde é um observável.
O teorema de Kolmogorov–Arnold–Moser é um resultado, em sistemas dinâmicos, sobre a persistência de movimentos quasi-periódicos. Este teorema resolve parcialmente o problema dos pequenos divisores (que origina problemas de convergência em sistemas com múltiplas frequências).
O movimento num sistema integrável está confinado a uma superfície toroidal. Diferentes condições iniciais do sistema originam diferentes toros num espaço de fase.
O teorema KAM estabelece que, se um sistema se encontra submetido a uma pequena perturbação não linear, alguns toros serão deformados e outros destruídos. Os que sobrevivem são aqueles que têm um quociente de frequências suficientemente irracional. Isto é, são destruídos aqueles cujo quociente de frequências se aproxima mais a um número racional, dados pela relação
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Com .
O último toro a ser destruído é o mais irracional de todos (o que guarda maior semelhança com o número áureo).
Mecânica hamiltoniana é uma reformulação da mecânica clássica que foi elaborada em 1833 pelo matemático irlandês William Rowan Hamilton. Originou-se da mecânica lagrangiana, outra reformulação da mecânica clássica, introduzida por Joseph Louis Lagrange em 1788. Ela pode entretanto ser formulada sem recorrer à mecânica lagrangiana, usando espaços simpléticos. Veja a seção sobre esta formulação matemática para isto. O método hamiltoniano difere do lagrangiano em que em vez de expressar confinamentos diferenciais de segunda ordem sobre um espaço coordenado n-dimensional, ela expressa confinamentos de primeira ordem sobre um espaço de fases 2n-dimensional.[1].
Como com a mecânica lagrangiana, as equações de Hamilton fornecem uma maneira nova e equivalente de olhar mecanismos clássicos. Geralmente, estas equações não fornecem uma maneira mais conveniente de resolver um problema particular. Entretanto, fornecem introspecções mais profundas na estrutura geral de mecanismos clássicos e em sua conexão aos mecânicos quânticos como compreendidos através dos mecânicos hamiltonianos, assim como suas conexões a outras áreas da ciência.
Com .
O último toro a ser destruído é o mais irracional de todos (o que guarda maior semelhança com o número áureo).
Mecânica hamiltoniana é uma reformulação da mecânica clássica que foi elaborada em 1833 pelo matemático irlandês William Rowan Hamilton. Originou-se da mecânica lagrangiana, outra reformulação da mecânica clássica, introduzida por Joseph Louis Lagrange em 1788. Ela pode entretanto ser formulada sem recorrer à mecânica lagrangiana, usando espaços simpléticos. Veja a seção sobre esta formulação matemática para isto. O método hamiltoniano difere do lagrangiano em que em vez de expressar confinamentos diferenciais de segunda ordem sobre um espaço coordenado n-dimensional, ela expressa confinamentos de primeira ordem sobre um espaço de fases 2n-dimensional.[1].
Como com a mecânica lagrangiana, as equações de Hamilton fornecem uma maneira nova e equivalente de olhar mecanismos clássicos. Geralmente, estas equações não fornecem uma maneira mais conveniente de resolver um problema particular. Entretanto, fornecem introspecções mais profundas na estrutura geral de mecanismos clássicos e em sua conexão aos mecânicos quânticos como compreendidos através dos mecânicos hamiltonianos, assim como suas conexões a outras áreas da ciência.
Visão geral simplificada dos usos[editar | editar código-fonte]
Para um sistema fechado, a soma da energia cinética e potencial no sistema é representada por um conjunto de equações diferenciais conhecido como as equações de Hamilton. Hamiltonianos podem ser usados para descrever tais sistemas simples como uma bola quicando, um pêndulo ou uma mola oscilante, em que há interconversão entre as energias potencial e cinética do sistema com o passar do tempo. Hamiltonianos podem também ser empregados para modelar a energia de outros sistemas dinâmicos mais complexos tais como órbitas planetárias e sistemas quânticos.[1]
As equações de Hamilton são geralmente escritas como segue:
- X
Para um sistema fechado, a soma da energia cinética e potencial no sistema é representada por um conjunto de equações diferenciais conhecido como as equações de Hamilton. Hamiltonianos podem ser usados para descrever tais sistemas simples como uma bola quicando, um pêndulo ou uma mola oscilante, em que há interconversão entre as energias potencial e cinética do sistema com o passar do tempo. Hamiltonianos podem também ser empregados para modelar a energia de outros sistemas dinâmicos mais complexos tais como órbitas planetárias e sistemas quânticos.[1]
As equações de Hamilton são geralmente escritas como segue:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nas equações acima, o ponto acentuando denota a derivada ordinária com respeito ao tempo das equações p = p(t) (chamada momento generalizado) e q = q(t) (chamado coordenadas generalizadas), tomando valores em algum espaço vetorial, e = é o assim chamado (função) Hamiltoniana, ou (valoração escalar) Hamiltoniano. Então, numa pequena nota mais explicitamente, pode-se escrever
- X
Nas equações acima, o ponto acentuando denota a derivada ordinária com respeito ao tempo das equações p = p(t) (chamada momento generalizado) e q = q(t) (chamado coordenadas generalizadas), tomando valores em algum espaço vetorial, e = é o assim chamado (função) Hamiltoniana, ou (valoração escalar) Hamiltoniano. Então, numa pequena nota mais explicitamente, pode-se escrever
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e especifica o domínio de valores nos quais o parâmetro t ("tempo") varia.
Para uma derivação mas detalhadas destas equações da mecânica lagrangeana, ver abaixo.
A mecânica de Lagrange ou mecânica lagrangiana, nomeada em honra ao seu conceptor, Joseph-Louis Lagrange, é uma formulação da mecânica clássica que combina a conservação do momento linear com a conservação da energia. Exposta pela primeira vez no livro Méchanique Analytique em 1788, a formulação é provida de um potente ferramental matemático equivalente a qualquer outra formulação da mecânica, como por exemplo, o formalismo newtoniano.
Na mecânica lagrangiana, a trajetória de um sistema de partículas é obtida resolvendo as equações de Lagrange em uma de suas duas formas, chamadas equações de Lagrange de primeiro tipo,[1] que trata as restrições explicitamente como equações adicionais, geralmente utilizando os multiplicadores de Lagrange;[2][3] e as equações de Lagrange de segundo tipo, que incorporam as restrições diretamente na escolha das coordenadas generalizadas.[1][4] O lema fundamental do cálculo das variações mostra que resolver as equações de Lagrange é equivalente a encontrar o caminho que minimiza a funcional ação, uma quantidade que é a integral da função de Lagrange no tempo.
Dado um conjunto de coordenadas generalizadas para descrever o sistema físico estudado, a Lagrangiana de qualquer sistema o caracteriza de forma unívoca e pode apresentar as seguintes dependências funcionais , em que que são as velocidades generalizadas.
Pelo Princípio de Hamilton,[5] que nos diz que o trajeto real da partícula,[6] entre os instantes e é aquele que minimiza a ação .
X
e especifica o domínio de valores nos quais o parâmetro t ("tempo") varia.
Para uma derivação mas detalhadas destas equações da mecânica lagrangeana, ver abaixo.
A mecânica de Lagrange ou mecânica lagrangiana, nomeada em honra ao seu conceptor, Joseph-Louis Lagrange, é uma formulação da mecânica clássica que combina a conservação do momento linear com a conservação da energia. Exposta pela primeira vez no livro Méchanique Analytique em 1788, a formulação é provida de um potente ferramental matemático equivalente a qualquer outra formulação da mecânica, como por exemplo, o formalismo newtoniano.
Na mecânica lagrangiana, a trajetória de um sistema de partículas é obtida resolvendo as equações de Lagrange em uma de suas duas formas, chamadas equações de Lagrange de primeiro tipo,[1] que trata as restrições explicitamente como equações adicionais, geralmente utilizando os multiplicadores de Lagrange;[2][3] e as equações de Lagrange de segundo tipo, que incorporam as restrições diretamente na escolha das coordenadas generalizadas.[1][4] O lema fundamental do cálculo das variações mostra que resolver as equações de Lagrange é equivalente a encontrar o caminho que minimiza a funcional ação, uma quantidade que é a integral da função de Lagrange no tempo.
Dado um conjunto de coordenadas generalizadas para descrever o sistema físico estudado, a Lagrangiana de qualquer sistema o caracteriza de forma unívoca e pode apresentar as seguintes dependências funcionais , em que que são as velocidades generalizadas.
Pelo Princípio de Hamilton,[5] que nos diz que o trajeto real da partícula,[6] entre os instantes e é aquele que minimiza a ação .
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Fixados os extremos da trajetória no espaço de configuração. Encontramos [7] as equações de Euler-Lagrange
X
Fixados os extremos da trajetória no espaço de configuração. Encontramos [7] as equações de Euler-Lagrange
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que são equações diferenciais parciais de segunda ordem em .
No caso de um sistema não-conservativo (ou dissipativo), temos
X
que são equações diferenciais parciais de segunda ordem em .
No caso de um sistema não-conservativo (ou dissipativo), temos
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que
X
em que
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
são as forças generalizadas externas.
A mecânica lagrangiana é baseada num formalismo escalar mais simples e geral, quando comparado ao formalismo vetorial de Newton. Com isso, ela é capaz de descrever igualmente bem fenômenos a baixas velocidades ou a velocidades relativísticas. O único aspecto que difere entre cada caso é a Função de Lagrange.
Em mecânica clássica, um sistema hamiltoniano é um sistema físico no qual as forças são invariantes da velocidade.
Os sistemas hamiltonianos são estudados na mecânica hamiltoniana.
Em matemática, um sistema hamiltoniano é um sistema de equações diferenciais que podem ser escritas na forma de equações de Hamilton. Os sistemas hamiltonianos são usualmente formulados em termos dos campos de vectores hamiltonianos numa variedade simplética ou variedade de Poisson. Os sistemas hamiltonianos são um caso especial de sistemas dinâmicos.[1]
são as forças generalizadas externas.
A mecânica lagrangiana é baseada num formalismo escalar mais simples e geral, quando comparado ao formalismo vetorial de Newton. Com isso, ela é capaz de descrever igualmente bem fenômenos a baixas velocidades ou a velocidades relativísticas. O único aspecto que difere entre cada caso é a Função de Lagrange.
Em mecânica clássica, um sistema hamiltoniano é um sistema físico no qual as forças são invariantes da velocidade.
Os sistemas hamiltonianos são estudados na mecânica hamiltoniana.
Em matemática, um sistema hamiltoniano é um sistema de equações diferenciais que podem ser escritas na forma de equações de Hamilton. Os sistemas hamiltonianos são usualmente formulados em termos dos campos de vectores hamiltonianos numa variedade simplética ou variedade de Poisson. Os sistemas hamiltonianos são um caso especial de sistemas dinâmicos.[1]
Sistema de segunda ordem[editar | editar código-fonte]
Um sistema de segunda ordem
X
Um sistema de segunda ordem
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
designa-se de sistema hamiltoniano se as funções e verificam a relação:
X
designa-se de sistema hamiltoniano se as funções e verificam a relação:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Função hamiltoniana[editar | editar código-fonte]
Se um sistema é hamiltoniano, existirá uma função de estado, , designada por função hamiltoniana, que permite definir as equações de evolução:[1]
X
Se um sistema é hamiltoniano, existirá uma função de estado, , designada por função hamiltoniana, que permite definir as equações de evolução:[1]
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nomeadamente, a função hamiltoniana contêm toda a informação dinâmica do sistema. Qualquer função hamiltoniana define um sistema dinâmico. E qualquer conjunto de equações de evolução, que verifiquem as condições para ser sistema hamiltoniano, definem uma função hamiltoniana através das relações:
X
Nomeadamente, a função hamiltoniana contêm toda a informação dinâmica do sistema. Qualquer função hamiltoniana define um sistema dinâmico. E qualquer conjunto de equações de evolução, que verifiquem as condições para ser sistema hamiltoniano, definem uma função hamiltoniana através das relações:
X